The role of reverse transcriptase in intron gain and loss mechanisms.

نویسندگان

  • Noa E Cohen
  • Roy Shen
  • Liran Carmel
چکیده

Intron density is highly variable across eukaryotic species. It seems that different lineages have experienced considerably different levels of intron gain and loss events, but the reasons for this are not well known. A large number of mechanisms for intron loss and gain have been suggested, and most of them have at least some level of indirect support. We therefore figured out that the variability in intron density can be a reflection of the fact that different mechanisms are active in different lineages. Quite a number of these putative mechanisms, both for intron loss and for intron gain, postulate that the enzyme reverse transcriptase (RT) has a key role in the process. In this paper, we lay out three predictions whose approval or falsification gives indication for the involvement of RT in intron gain and loss processes. Testing these predictions requires data on the intron gain and loss rates of individual genes along different branches of the eukaryotic phylogenetic tree. So far, such rates could not be computed, and hence, these predictions could not be rigorously evaluated. Here, we use a maximum likelihood algorithm that we have devised in the past, Evolutionary Reconstruction by Expectation Maximization, which allows the estimation of such rates. Using this algorithm, we computed the intron loss and gain rates of more than 300 genes in each branch of the phylogenetic tree of 19 eukaryotic species. Based on that we found only little support for RT activity in intron gain. In contrast, we suggest that RT-mediated intron loss is a mechanism that is very efficient in removing introns, and thus, its levels of activity may be a major determinant of intron number. Moreover, we found that intron gain and loss rates are negatively correlated in intron-poor species but are positively correlated for intron-rich species. One explanation to this is that intron gain and loss mechanisms in intron-rich species (like metazoans) share a common mechanistic component, albeit not a RT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of Intron Loss and Gain in the Fission Yeast Schizosaccharomyces

The fission yeast, Schizosaccharomyces pombe, is an important model species with a low intron density. Previous studies showed extensive intron losses during its evolution. To test the models of intron loss and gain in fission yeasts, we conducted a comparative genomic analysis in four Schizosaccharomyces species. Both intronization and de-intronization were observed, although both were at a lo...

متن کامل

Reverse transcription of spliced psbA mRNA in Chlamydomonas spp. and its possible role in evolutionary intron loss.

Reverse transcription of mRNA is thought to be an important first step in a model that explains certain evolutionary changes within genes, such as the loss of introns or RNA editing sites. In this model, reverse transcription of mRNA produces cDNA molecules that replace part of the parental gene by homologous recombination. In vivo evidence of reverse transcription of physiologically relevant m...

متن کامل

Evidence for Extensive Recent Intron Transposition in Closely Related Fungi

Though spliceosomal introns are a major structural component of most eukaryotic genes and intron density varies by more than three orders of magnitude among eukaryotes [1-3], the origins of introns are poorly understood, and only a few cases of unambiguous intron gain are known [4-8]. We utilized population genomic comparisons of three closely related fungi to identify crucial transitory phases...

متن کامل

Patterns of Intron Gain and Loss in Fungi

Little is known about the patterns of intron gain and loss or the relative contributions of these two processes to gene evolution. To investigate the dynamics of intron evolution, we analyzed orthologous genes from four filamentous fungal genomes and determined the pattern of intron conservation. We developed a probabilistic model to estimate the most likely rates of intron gain and loss giving...

متن کامل

A reverse transcriptase-loop mediated isothermal amplification assay (RT-LAMP) for rapid detection of bovine viral diarrhea virus 1 and 2

Bovine viral diarrhea virus (BVDV) is a pathogen that infects cattle, and is globally important. It causes substantial financial losses to the livestock industry. In the current study, a one-step reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP) assay was set up for rapid and efficient detection of BVDV. For this purpose, four primers were designed to recognize six distinct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2012